Genotype-dependent response to carbon availability in growing tomato fruit.
نویسندگان
چکیده
Tomato fruit growth and composition depend on both genotype and environment. This paper aims at studying how fruit phenotypic responses to changes in carbon availability can be influenced by genotype, and at identifying genotype-dependent and -independent changes in gene expression underlying variations in fruit growth and composition. We grew a parental line (Solanum lycopersicum) and an introgression line from Solanum chmielewskii harbouring quantitative trait loci for fresh weight and sugar content under two fruit loads (FL). Lowering FL increased fruit cell number and reduced fruit developmental period in both genotypes. In contrast, fruit cell size was increased only in the parental line. Modifications in gene expression were monitored using microarrays and RT-qPCR for a subset of genes. FL changes induced more deployments of regulation systems (transcriptional and post-transcriptional) than massive adjustments of whole primary metabolism. Interactions between genotype and FL occurred on 99 genes mainly linked to hormonal and stress responses, and on gene expression kinetics. Links between gene expression and fruit phenotype were found for aquaporin expression levels and fruit water content, and invertase expression levels and sugar content. In summary, the present data emphasized age- and genotype-dependent responses of tomato fruit to carbon availability, at phenotypic as well as gene expression level.
منابع مشابه
Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection
Throughout tomato domestication, a large increase in fruit size was associated with a loss of dry matter and sugar contents. This study aims to dissect the contributions of genetic variation and the physiological processes underlying the relationships between fruit growth and the accumulation of dry matter and sugars. Fruit quality traits and physiological parameters were measured on 20 introgr...
متن کاملPollen Viability and Fruit Set of Tomato Genotypes under Optimum- and High-temperature Regimes
Heat-tolerant and -sensitive Lycopersicon esculentum Mill. and L. pimpinellifolium (Jusl.) Mill. genotypes were grown in the greenhouse under optimum(27/23C, day/night) and high-temperature (35/23C) stress regimes. Heat tolerance levels in the genotypes were established by determining percent fruit set at high and optimum temperatures. Under optimum temperature, fruit set ranged from 41% to 84%...
متن کاملWorm castings-based growing media with biochar and arbuscular mycorrhizal fungi for producing organic tomato (Solanum lycopersicum L.) in greenhouse.
Organic vegetable production has specific research and innovation requirements which are not shared by other parts of the food and farming sector. A pot experiment was conducted to investigate the interactive effects of few permitted organic inputs such as arbuscular mycorrhizal fungi, biochar, and different ratios of peat:worm casting on tomato (Solanum lycopersicum L.) growth, mycorrhizal dep...
متن کاملInter-Species Comparative Analysis of Components of Soluble Sugar Concentration in Fleshy Fruits
The soluble sugar concentration of fleshy fruit is a key determinant of fleshy fruit quality. It affects directly the sweetness of fresh fruits and indirectly the properties of processed products (e.g., alcohol content in wine). Despite considerable divergence among species, soluble sugar accumulation in a fruit results from the complex interplay of three main processes, namely sugar import, su...
متن کاملModel-Assisted Estimation of the Genetic Variability in Physiological Parameters Related to Tomato Fruit Growth under Contrasted Water Conditions
Drought stress is a major abiotic stress threatening plant and crop productivity. In case of fleshy fruits, understanding mechanisms governing water and carbon accumulations and identifying genes, QTLs and phenotypes, that will enable trade-offs between fruit growth and quality under Water Deficit (WD) condition is a crucial challenge for breeders and growers. In the present work, 117 recombina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant, cell & environment
دوره 33 7 شماره
صفحات -
تاریخ انتشار 2010